跳至主要内容

Uzbekistan wraps up Kadyrinskaya Hydropower plant modernisation

 Uzbekistan’s Energy Ministry has announced the completion on time of the three-year project to modernise the Kadyrinskaya Hydropower Plant, which was marked in a ceremony attended by foreign partners and representatives from the Kadyrinskaya HPP-3 plant and Uzbekhydroenergo, Uzbekistan’s state hydropower producer and developer.


“The modernisation of the Kadyrinskaya HPP-3 plant is a great step forward in making effective use of Uzbekistan’s hydropower potential and forming a unified system for managing water and energy resources,” Uzbekistan’s Deputy Energy Minister Sherzod Khodjaev said. “Progress in Uzbekistan’s hydropower industry will increase energy efficiency and the contribution of renewable energy to the country’s energy balance,” he added.

The modernisation of Kadyrinskaya HPP-3 was in cooperation with a leading Chinese hydropower enterprise and a team of Chinese specialists, Uzbekistan’s Energy Ministry said on August 3, adding that the project cost was $27.6 million, and capital was provided through a $9.8 million Eximbank loan from China and $17.8 million from Uzbekistan’s own funds.

Modernisation of the plant has increased its capacity from 13.23 MW to 15.34 MW and average annual power output to 124.4 million kWh.

The project to modernise Kadyrinskaya HPP-3 is one of several ongoing investment projects to both construct new hydropower plants and modernise existing ones. It is part of Uzbekistan’s ambitious national energy strategy seeking to generate a quarter of all electricity from renewable sources by 2030. The strategy aims for 3.8 GW of hydro energy, 5 GW of solar energy and up to 3 GW of wind energy.

In line with the Nationally Determined Contribution under the United Nations Framework Convention on Climate Change, the Government of Uzbekistan is committed to the general goals of policy for improving energy efficiency and increasing the share of renewable energy in the country’s energy balance.

The Uzbek ministry said the project, which commenced in December 2017 following a Presidential Decree, was completed on time despite the ongoing coronavirus pandemic. During the last months of the project, employees and contractors worked around the clock under special quarantine conditions.

NEWEUROPE

评论

此博客中的热门博文

Water Turbine Design for Small Scale Hydro Energy

                                                  https://www.boland-hydroturbine.com/ Selecting the Best Type of Water Turbine Design Selecting the best type of water turbine design for your particular situation often depends on the amount of head and flow rate that is available at your particular location and whether it is at the side of a river or stream, or the water is to be channelled or piped directly to your location. Other factors include whether you want an enclosed “reaction turbine design” such as the Francis turbine or an open “impulse turbine design”, such as the Pelton turbine as well as the speed of rotation of your proposed electrical generator. By analysing all of these factors together you can get some indication of what type of  Water Turbine Design  may work best for your particular situation. Knowing the difference between a Pelton and Francis turbine for example, will help make the choice easier. The following table gives a basic idea of which particul

Types of Hydropower Plants

                                                   There are three types of hydropower facilities: impoundment, diversion, and pumped storage. Some hydropower plants use dams and some do not. The images below show both types of hydropower plants. MPOUNDMENT The most common type of hydroelectric power plant is an impoundment facility. An impoundment facility, typically a large hydropower system, uses a dam to store river water in a reservoir. Water released from the reservoir flows through a turbine, spinning it, which in turn activates a generator to produce electricity. The water may be released either to meet changing electricity needs or to maintain a constant reservoir level.                                                www.boland-hydroturbine.com DIVERSION A diversion, sometimes called run-of-river, facility channels a portion of a river through a canal or penstock. It may not require the use of a dam. PUMPED STORAGE Another type of hydropower called pumped

Hydropower, the only solution for cheapest power generation

                                                 https://www.boland-hydroturbine.com/ Hydropower has the lowest life-cycle cost of any power generation technology. Hydropower is a potential life-saver for Pakistan. Yet its development has been hampered for decades. Hence, only 15 percent of Pakistan’s over 60,000MW hydropower potential has been developed in 70 years. Hydropower plants power generation can give a country economy a new path of progress. Despite initial costs and long gestation periods, hydropower plants have almost no fuel cost and have operational lives of over a century. New hydropwer plants generate electricity at Rs6-10 per unit compared to thermal power plants’ Rs15-25 per unit. All other power-generating technologies have up to 30 years of project life and need up to four times expensive plant replacements in foreign exchange. Wind and solar technologies are solely dependent on the weather. They can at best supplement but not replace hydropower which, amo